This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064526 Define a pair of sequences by p(0)=0, q(0)=p(1)=q(1)=1, q(n+1)=p(n)*q(n-1), p(n+1)=q(n+1)+q(n) for n>0; sequence give p(n); A064183 gives q(n). 9
 0, 1, 2, 3, 5, 13, 49, 529, 21121, 10369921, 213952189441, 2214253468601687041, 473721461635593679669210030081, 1048939288228833101089604217183056027094304481281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Every nonzero term is relatively prime to all others (which proves that there are infinitely many primes). See A236394 for the primes that appear. LINKS R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - N. J. A. Sloane, Jun 13 2012 M. Somos and R. Haas, A linked pair of sequences implies the primes are infinite, Amer. Math. Monthly, 110 (No. 6, 2003), 539-540. FORMULA a(n) = (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)). a(n) ~ c^(phi^n), where c = 1.2364241784241086061606568429916822975882631646194967549068405592472125928485... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015 MATHEMATICA Flatten[{0, 1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3}, a, {n, 2, 15}]}] (* Vaclav Kotesovec, May 21 2015 *) PROG (PARI) {a(n) = local(v); if( n<3, max(0, n), v = [1, 1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])} (PARI) {a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))} CROSSREFS Cf. A001685, A003686, A064183. See A236394 for the primes that are produced. Sequence in context: A215102 A110364 A111288 * A261192 A103594 A042695 Adjacent sequences:  A064523 A064524 A064525 * A064527 A064528 A064529 KEYWORD nonn,easy AUTHOR Michael Somos, Oct 07 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 04:37 EDT 2019. Contains 327995 sequences. (Running on oeis4.)