This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064487 Order of twisted Suzuki group Sz(2^(2*n + 1)), also known as the group 2B2(2^(2*n + 1)). 4
 20, 29120, 32537600, 34093383680, 35115786567680, 36011213418659840, 36888985097480437760, 37777778976635853209600, 38685331082014736871587840, 39614005699412557795646504960, 40564799864499450381466515537920 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Every term in A056866 is divisible by 12 or 20. Those terms that are not divisible by 12 are divisible by a term from this sequence. - Charles R Greathouse IV via Danny Rorabaugh, Apr 21 2015 REFERENCES R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985, p. xvi. See ATLAS v. 3 Michio Suzuki, A new type of simple groups of finite order, Proc Natl Acad Sci U S A. 46:6 (1960), pp. 868-870. Index entries for linear recurrences with constant coefficients, signature (1360,-365568,22282240,-268435456). FORMULA a(n) = q^4*(q^2-1)*(q^4+1), where q^2 = 2^(2*n+1). G.f.: 20*(1+128*x)*(1-32*x+16384*x^2) / ((1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)). - Colin Barker, Dec 25 2015 MATHEMATICA LinearRecurrence[{1360, -365568, 22282240, -268435456}, {20, 29120, 32537600, 34093383680}, 20] (* Harvey P. Dale, Sep 08 2018 *) PROG (GAP) g := Sz(32); s := Size(g); (MAGMA) [ #Sz(2^(2*n+1)) : n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 (PARI) a(n)=my(t=2^(2*n+1)); t^2*(t-1)*(t^2+1) \\ Charles R Greathouse IV, Apr 21 2015 (PARI) Vec(20*(1+128*x)*(1-32*x+16384*x^2)/((1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)) + O(x^20)) \\ Colin Barker, Dec 25 2015 CROSSREFS Cf. A037250, A064583. Sequence in context: A172758 A146497 A060618 * A099187 A129041 A129040 Adjacent sequences:  A064484 A064485 A064486 * A064488 A064489 A064490 KEYWORD nonn,easy AUTHOR Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 15 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 10:56 EDT 2019. Contains 325155 sequences. (Running on oeis4.)