login
A064459
a(n) = Sum_{k>=1} floor(n/12^k).
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8
OFFSET
0,25
COMMENTS
Original incorrect name was: "Highest power of 12 dividing n!": that sequence is A090619. If p is prime, Legendre's formula says the highest power of p dividing n! is Sum_{k>=1} floor(n/p^k), but of course 12 is not prime. - Robert Israel, Mar 23 2018
LINKS
FORMULA
a(n) = floor[n/12] + floor[n/144] + floor[n/1728] + floor[n/20736] + ....
MAPLE
f:= proc(n) add(floor(n/12^k), k=1..floor(log[12](n))) end proc:
f(0):= 0:
map(f, [$0..100]); # Robert Israel, Mar 23 2018
MATHEMATICA
Table[t = 0; p = 12; While[s = Floor[n/p]; t = t + s; s > 0, p *= 12]; t, {n, 0, 100} ]
Join[{0}, Accumulate[Table[If[Divisible[n, 12], 1, 0], {n, 110}]]] (* Harvey P. Dale, Feb 14 2016 *)
PROG
(PARI) { for (n=0, 1000, a=0; p=12; while (s = n\p, a+=s; p*=12); write("b064459.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 15 2009
(GAP) List([0..110], n->Sum([1..n], k-?Int(n/(12^k)))); # Muniru A Asiru, Mar 24 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Oct 03 2001
EXTENSIONS
Corrected by Robert Israel, Mar 23 2018
STATUS
approved