login
A064451
LCM of totients of binomial coefficients C(n,j), j = 0..n.
1
1, 1, 2, 2, 4, 8, 24, 24, 72, 288, 240, 240, 1440, 2880, 2880, 11520, 23040, 46080, 207360, 276480, 82944, 829440, 2280960, 9123840, 15206400, 60825600, 273715200, 1642291200, 766402560, 7664025600, 1916006400, 1277337600
OFFSET
1,3
LINKS
EXAMPLE
For n=4, the binomial coefficients C(4,j) are 1, 4, 6, 4, and 1. The totients are 1, 2, 2, 2, and 1. So a(4) = lcm of 1, 2, 2, 2, 1 = 2. - Michael B. Porter, Jun 25 2018
MATHEMATICA
Table[LCM@@Table[EulerPhi[Binomial[n, j]], {j, 0, n}], {n, 40}] (* Harvey P. Dale, Nov 04 2019 *)
PROG
(PARI) { for (n=1, 200, a=1; for (j=0, n, a=lcm(a, eulerphi(binomial(n, j)))); write("b064451.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 14 2009
(PARI) a(n) = lcm(vector(n+1, k, eulerphi(binomial(n, k-1)))); \\ Michel Marcus, Jun 24 2018
CROSSREFS
Cf. A002944 (see 1st comment there).
Sequence in context: A056630 A259813 A121853 * A223027 A325514 A032440
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 02 2001
EXTENSIONS
Previous Mathematica program replaced by Harvey P. Dale, Nov 04 2019
STATUS
approved