The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064430 Product of the sizes of the conjugacy classes of the symmetric group S_n. 1
 1, 1, 6, 864, 43200000, 272097792000000000, 3416681839784939886182400000000000, 1847600699255039694224318542233446367734016245760000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..13 FORMULA a(n) = (n!)^A000041(n) / A007870(n)^2. EXAMPLE a(3) = 6 because the sizes of the conjugacy classes in S_3 are 1,2,3 and the product is 6. MAPLE b:= proc(n, i) option remember; `if`(n=0 or i=1, [1\$2], ((f, g)-> [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i)))) end: a:= n-> n!^combinat[numbpart](n)/b(n\$2)[2]^2: seq(a(n), n=1..9); # Alois P. Heinz, Aug 03 2021 MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g}, {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1}, b[n, i-1]], If[i > n, {0, 1}, b[n-i, i]]]]; A007870[n_] := b[n, n][[2]]; a[n_] := (n!)^PartitionsP[n]/A007870[n]^2; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Apr 25 2022, after Alois P. Heinz *) PROG (Magma) [ &*[ c[2] : c in ClassesData(Sym(n))] : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 CROSSREFS Cf. A007870, A000041, A063073, A000142. Sequence in context: A281690 A201141 A078927 * A332186 A279304 A180992 Adjacent sequences: A064427 A064428 A064429 * A064431 A064432 A064433 KEYWORD nonn AUTHOR Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Sep 30 2001 EXTENSIONS More terms from Vladeta Jovovic, Oct 04 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 18:49 EST 2023. Contains 359947 sequences. (Running on oeis4.)