login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064427 (Number of primes <= n - 1) + n. 3
1, 2, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Complement of set {A(prime(n)+n)} = {A014688(n)} = {A(A000040(n)+A000027(n))}. [Jaroslav Krizek, Dec 10 2009]

a(n) = numbers m such that are not the sum of k-th prime and k for any k >= 1. [Jaroslav Krizek, Dec 10 2009]

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Carlos Rivera, Puzzle 821. Prime numbers and complementary sequences, Prime Puzzles.

Eric Weisstein's World of Mathematics, Prime Counting Function

Wikipedia, Prime-counting function

FORMULA

For n > 1: a(n) = A000720(n - 1) + n.

MATHEMATICA

a[n_] := PrimePi[a[n-1]]+n; a[1]=1

Table[PrimePi[n-1]+n, {n, 60}] (* Harvey P. Dale, Apr 03 2015 *)

PROG

(Haskell)

a064427 1 = 1

a064427 n = a000720 (n - 1) + toInteger n

-- Reinhard Zumkeller, Apr 17 2012

(PARI) a(n) = if (n==1, 1, primepi(n-1)+n); \\ Michel Marcus, Feb 13 2016

(MAGMA) [1] cat [#PrimesUpTo(n-1)+n: n in [2..100]]; // Vincenzo Librandi, Feb 13 2016

CROSSREFS

Cf. A095117.

Sequence in context: A026516 A186493 A111094 * A183569 A248612 A247000

Adjacent sequences:  A064424 A064425 A064426 * A064428 A064429 A064430

KEYWORD

nonn

AUTHOR

Santi Spadaro, Sep 30 2001

EXTENSIONS

Definition improved by Reinhard Zumkeller, Apr 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 12:25 EST 2016. Contains 278971 sequences.