This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064427 (Number of primes <= n - 1) + n. 3
 1, 2, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Complement of set {A(prime(n)+n)} = {A014688(n)} = {A(A000040(n)+A000027(n))}. [Jaroslav Krizek, Dec 10 2009] a(n) = numbers m such that are not the sum of k-th prime and k for any k >= 1. [Jaroslav Krizek, Dec 10 2009] LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Carlos Rivera, Puzzle 821. Prime numbers and complementary sequences, Prime Puzzles. Eric Weisstein's World of Mathematics, Prime Counting Function Wikipedia, Prime-counting function FORMULA For n > 1: a(n) = A000720(n - 1) + n. MATHEMATICA a[n_] := PrimePi[a[n-1]]+n; a[1]=1 Table[PrimePi[n-1]+n, {n, 60}] (* Harvey P. Dale, Apr 03 2015 *) PROG (Haskell) a064427 1 = 1 a064427 n = a000720 (n - 1) + toInteger n -- Reinhard Zumkeller, Apr 17 2012 (PARI) a(n) = if (n==1, 1, primepi(n-1)+n); \\ Michel Marcus, Feb 13 2016 (MAGMA) [1] cat [#PrimesUpTo(n-1)+n: n in [2..100]]; // Vincenzo Librandi, Feb 13 2016 CROSSREFS Cf. A095117. Sequence in context: A026516 A186493 A111094 * A183569 A248612 A247000 Adjacent sequences:  A064424 A064425 A064426 * A064428 A064429 A064430 KEYWORD nonn AUTHOR Santi Spadaro, Sep 30 2001 EXTENSIONS Definition improved by Reinhard Zumkeller, Apr 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.