Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 14 2018 03:54:23
%S 2,4,6,8,16,22,28,30,34,40,42,46,52,54,58,60,64,70,72,76,82,84,88,90,
%T 94,96,98,100,102,106,112,118,120,124,126,130,132,136,138,142,148,150,
%U 154,160,162,166,168,172,174,178,180,184,190,192,196
%N Even numbers not the sum of a pair of the greater of the twin primes.
%H Robert Israel, <a href="/A064408/b064408.txt">Table of n, a(n) for n = 1..10000</a>
%e The greater of the twin primes < 200 are 5, 7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199. 22 is in the above sequence because no combination of any two numbers from the set just enumerated can be summed to make 22.
%p N:= 300: # to get all terms <= N
%p T:= select(t -> isprime(t) and isprime(t-2), {5,seq(6*i+1,i=1..N/6)}):
%p A:= {seq(i,i=2..N,2)} minus {seq(seq(T[i]+T[j],j=1..i),i=1..nops(T))}:
%p sort(convert(A,list)); # _Robert Israel_, Mar 14 2018
%t q = Select[ Range[ 200 ], PrimeQ[ # - 2 ] && PrimeQ[ #2 ] & ]; Complement[ Table[ n, {n, 2, 200, 2} ], Union[ Flatten[ Table[ q[ [ i ] ] + q[ [ j ] ], {i, 1, Length[ q ] }, {j, 1, i} ] ] ] ]
%t upto=200;Module[{gtp=Transpose[Select[Partition[Prime[Range[PrimePi[ upto]]], 2,1],#[[2]]-#[[1]]==2&]][[2]]},Complement[Range[2,upto,2], Total/@ Tuples[gtp,2]]] (* _Harvey P. Dale_, Jan 17 2015 *)
%K nonn
%O 1,1
%A _Robert G. Wilson v_, Sep 29 2001