

A064362


Numbers n such that no Lucas number is a multiple of n.


5



5, 8, 10, 12, 13, 15, 16, 17, 20, 21, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 45, 48, 50, 51, 52, 53, 55, 56, 57, 60, 61, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 104
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Any positive multiple of a member of this sequence is also a member. Primitive elements are in A124378.  Franklin T. AdamsWatters, Oct 28 2006
The Mathematica code for testing the number n works by generating the Lucas sequence (mod n) and stopping when either n divides a term of the sequence or the entire sequence (mod n) has been generated. Hence, up to A106291(n) terms need to be computed.  T. D. Noe, Mar 20 2013


REFERENCES

Teruo Nishiyama, Fibonacci numbers, SuuriKagaku, No. 285, March 1987, 6769, (in Japanese).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614, 2014 and J. Int. Seq. 17 (2014) # 14.8.5


MATHEMATICA

test[ n_ ] := For[ a=1; b=3, True, t=b; b=Mod[ a+b, n ]; a=t, If[ b==0, Return[ True ] ]; If[ a==2&&b==1, Return[ False ] ] ]; Select[ Range[ 110 ], !test[ # ]& ]


CROSSREFS

Complement of A065156.
Cf. A000032, A124378.
Sequence in context: A205841 A049195 A172019 * A173298 A248356 A115401
Adjacent sequences: A064359 A064360 A064361 * A064363 A064364 A064365


KEYWORD

easy,nonn


AUTHOR

Naohiro Nomoto, Oct 15 2001


EXTENSIONS

More terms from Dean Hickerson, Oct 18, 2001


STATUS

approved



