This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064325 Generalized Catalan numbers C(-3; n). 6
 1, 1, -2, 13, -98, 826, -7448, 70309, -686090, 6865150, -70057772, 726325810, -7628741204, 81002393668, -868066319108, 9376806129493, -101988620430938, 1116026661667318, -12277755319108748, 135715825209716038, -1506587474535945788, 16789107646422189868, -187747069029477151328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references. LINKS FORMULA a(n) = sum((n-m)*binomial(n-1+m, m)*((-3)^m)/n, m=0..n-1) = ((1/4)^n)*(1+3*sum(C(k)*(-3*4)^k, k=0..n-1)), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan). G.f.: (1+3*x*c(-3*x)/4)/(1-x/4) = 1/(1-x*c(-3*x)) with c(x) g.f. of Catalan numbers A000108. a(n) = hypergeometric([1-n, n], [-n], -3) for n>0. - Peter Luschny, Nov 30 2014 MATHEMATICA a[0] = 1; a[n_] := Sum[(n-m) Binomial[n+m-1, m] (-3)^m/n, {m, 0, n-1}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 30 2018 *) PROG (Sage) def a(n):     if n == 0: return 1     return hypergeometric([1-n, n], [-n], -3).simplify() [a(n) for n in range(24)] # Peter Luschny, Nov 30 2014 (PARI) a(n) = if (n==0, 1, sum(m=0, n-1, (n-m)*binomial(n-1+m, m)*(-3)^m/n)); \\ Michel Marcus, Jul 30 2018 CROSSREFS Cf. A064334, A000108. Sequence in context: A074614 A184019 A300633 * A123619 A187746 A030519 Adjacent sequences:  A064322 A064323 A064324 * A064326 A064327 A064328 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Sep 21 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:34 EDT 2018. Contains 316275 sequences. (Running on oeis4.)