login
A064312
a(n) = B(n)*P(n), where B(n) are Bell numbers (A000110) and P(n) are numbers of arrangements of a set of n elements (A000522).
1
1, 2, 10, 80, 975, 16952, 397271, 12014900, 453748140, 20859612270, 1143989113475, 73628313849840, 5486361777107965, 467931786713485382, 45238398292112762210, 4915902436799253089420, 596048018991814531136899
OFFSET
0,2
FORMULA
Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)= int(x^n*sum(exp(-x/k)*Heaviside(x-k)/(k*k!), k=1..infinity), x=0..infinity).
E.g.f.: A(x) = Sum_{n>=0} exp(n*x-1)/(n!*(1-n*x)). - Vladeta Jovovic, Feb 04 2008
MAPLE
a:=n->sum(bell(n)*n!/j!, j=0..n):seq(a(n), n=0..16); # Zerinvary Lajos, Mar 19 2007
CROSSREFS
Sequence in context: A133480 A227464 A269353 * A063902 A088351 A367432
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 07 2001
STATUS
approved