The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064311 Generalized Catalan numbers C(-2; n). 4
 1, 1, -1, 5, -25, 141, -849, 5349, -34825, 232445, -1582081, 10938709, -76616249, 542472685, -3876400305, 27919883205, -202480492905, 1477306676445, -10836099051105, 79861379898165, -591082795606425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references. LINKS FORMULA a(n) = sum((n-m)*binomial(n-1+m, m)*((-2)^m)/n, m=0..n-1) = ((1/3)^n)*(1+2*sum(C(k)*(-2*3)^k, k=0..n-1)), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan). G.f.: (1+2*x*c(-2*x)/3)/(1-x/3) = 1/(1-x*c(-2*x)) with c(x) g.f. of Catalan numbers A000108. a(n) = hypergeom([1-n, n], [-n], -2) for n>0. - Peter Luschny, Nov 30 2014 a(n) ~ -(-1)^n * 2^(3*n+1) / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 03 2019 MATHEMATICA a[n_] := If[n==0, 1, Sum[(n-m)*Binomial[n+m-1, m]*(-2)^m/n, {m, 0, n-1}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 03 2019 *) PROG (Sage) import mpmath mp.dps = 25; mp.pretty = True a = lambda n: mpmath.hyp2f1(1-n, n, -n, -2) if n>0 else 1 [int(a(n)) for n in range(21)] # Peter Luschny, Nov 30 2014 CROSSREFS Cf. A064062. Sequence in context: A124891 A094094 A081683 * A122441 A114870 A222676 Adjacent sequences:  A064308 A064309 A064310 * A064312 A064313 A064314 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Sep 21 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 21:30 EST 2020. Contains 331128 sequences. (Running on oeis4.)