login
A064272
Number of representations of n as the sum of a prime number and a nonzero square.
9
0, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 0, 1, 3, 2, 1, 2, 0, 3, 2, 0, 2, 1, 0, 4, 2, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 3, 1, 3, 2, 0, 2, 2, 0, 4, 2, 0, 2, 3, 2, 4, 2, 1, 2, 3, 1, 1, 3, 1, 4, 2, 1, 3, 1, 1, 5, 3, 0, 3, 3, 2, 2, 2, 0, 4, 2, 1, 3, 2, 1, 4, 1, 1, 2, 3, 2, 3, 4, 1
OFFSET
2,5
COMMENTS
a(A064233(n))=0.
A002471(n) - 1 <= a(n) <= A002471(n). [Reinhard Zumkeller, Sep 30 2011]
A224076(n) <= a(A214583(n)+1) for n such that A214583 is defined; a(A064283(n)) = n and a(m) <> n for m < A064283(n). - Reinhard Zumkeller, Mar 31 2013
LINKS
FORMULA
a(n) = SUM(A010051(k)*A010052(n-k+1): 1<=k<=n). [From Reinhard Zumkeller, Nov 05 2009]
G.f.: (Sum_{k>=1} x^prime(k))*(Sum_{k>=1} x^(k^2)). - Ilya Gutkovskiy, Feb 05 2017
EXAMPLE
6=2+4=5+1, thus a(6)=2.
PROG
(Haskell)
a064272 n = sum $
map (a010051 . (n -)) $ takeWhile (< n) $ tail a000290_list
-- Reinhard Zumkeller, Jul 23 2013, Sep 30 2011
CROSSREFS
Cf. A064233.
Cf. A000290.
Sequence in context: A135936 A109707 A214578 * A117479 A200650 A281743
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 23 2001
STATUS
approved