login
Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,51.
11

%I #13 Oct 17 2019 05:57:58

%S 330,1656,1758,6960,11958,14406,27258,30318,30930,31236,37356,40110,

%T 43986,44088,50820,53268,55818,63366,65100,67650,71526,74586,81930,

%U 90906,93150,94476,98250,99678,109470,119568,121710,129768,135276,141906,146190,147516,155166

%N Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,51.

%C am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

%D Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

%H Amiram Eldar, <a href="/A064262/b064262.txt">Table of n, a(n) for n = 1..10000</a>

%t CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda[n]] == 1; Select[ Range@ 9000, PrimeQ[# + 1] && PrimeQ[2# + 1] && PrimeQ[51# + 1] && CarmichaelNbrQ[(# + 1)(2# + 1)(51# + 1)] &] (* _Robert G. Wilson v_, Aug 23 2012 *)

%Y Cf. A087788.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Sep 23 2001

%E Offset corrected and more terms added by _Amiram Eldar_, Oct 17 2019