login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers. 105

%I

%S 1,2,3,5,4,7,11,6,13,17,10,19,9,8,23,29,14,15,31,22,37,41,12,43,25,26,

%T 47,21,34,53,59,20,33,61,38,67,71,18,35,73,16,79,39,46,83,55,58,51,89,

%U 28,97,101,30,103,107,62,109,57,44,65,49,74,27,113,82,127,85,24,131

%N Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

%C a(A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n + 1 for all n. At odd numbers a is multiplicative: a(2x - 1) * a(2y - 1) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - _Reinhard Zumkeller_

%C Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - _Henry Bottomley_, Apr 15 2005

%C From _Antti Karttunen_, Jul 25 2016: (Start)

%C Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:

%C A243505(n) = A122111(a(n)).

%C A243065(n) = A241909(a(n)).

%C A244153(n) = A156552(a(n)).

%C A245611(n) = A243071(a(n)).

%C (End)

%H Carl R. White, <a href="/A064216/b064216.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = A064989(2n - 1). - _Antti Karttunen_, May 12 2014

%e For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016

%t Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* _Michael De Vlieger_, Dec 18 2014, revised Mar 17 2016 *)

%o (Scheme) (define (A064216 n) (A064989 (- (+ n n) 1))) ;; _Antti Karttunen_, May 12 2014

%o (PARI) a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ _Michel Marcus_, Mar 17 2016

%o (Python)

%o from sympy import factorint, prevprime

%o from operator import mul

%o def a(n):

%o f=factorint(2*n - 1)

%o return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # _Indranil Ghosh_, May 13 2017

%Y Odd bisection of A064989 and A252463.

%Y Row 1 of A251721, Row 2 of A249821.

%Y Cf. A048673 (inverse permutation), A048674 (fixed points).

%Y Cf. A246361 (numbers n such that a(n) <= n.)

%Y Cf. A246362 (numbers n such that a(n) > n.)

%Y Cf. A246371 (numbers n such that a(n) < n.)

%Y Cf. A246372 (numbers n such that a(n) >= n.)

%Y Cf. A246373 (primes p such that a(p) >= p.)

%Y Cf. A246374 (primes p such that a(p) < p.)

%Y Cf. A246343 (iterates starting from n=12.)

%Y Cf. A246345 (iterates starting from n=16.)

%Y Cf. A245448 (this permutation "squared", a(a(n)).)

%Y Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).

%Y Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.

%Y Cf. also A003961, A270430, A270431.

%Y Cf. also permutations A122111, A156552, A241909, A243071, A243065, A243505, A244153, A245611, A254116.

%K easy,nonn

%O 1,2

%A _Howard A. Landman_, Sep 21 2001

%E More terms from _Reinhard Zumkeller_, Sep 26 2001

%E Additional description added by _Antti Karttunen_, May 12 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 02:07 EST 2019. Contains 329242 sequences. (Running on oeis4.)