login
A064201
9 times octagonal numbers: a(n) = 9n(3n-2).
3
0, 9, 72, 189, 360, 585, 864, 1197, 1584, 2025, 2520, 3069, 3672, 4329, 5040, 5805, 6624, 7497, 8424, 9405, 10440, 11529, 12672, 13869, 15120, 16425, 17784, 19197, 20664, 22185, 23760, 25389, 27072, 28809, 30600, 32445, 34344, 36297
OFFSET
0,2
REFERENCES
L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 341.
FORMULA
a(n) = 9*(n-2)*(3*n-8), with offset 2.
a(n) = A000567(n)*9. - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 54*n - 45, with n>0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
G.f.: 9*x*(1+5*x)/(1-x)^3. - Colin Barker, Feb 29 2012
MATHEMATICA
9*PolygonalNumber[8, Range[0, 40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3, -3, 1}, {0, 9, 72}, 40] (* Harvey P. Dale, Aug 01 2020 *)
PROG
(PARI) a(n)=9*n*(3*n-2) \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
Cf. A000567.
Sequence in context: A123987 A003365 A044196 * A244728 A069978 A070823
KEYWORD
nonn,easy
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001
EXTENSIONS
Better definition, corrected offset and edited from Omar E. Pol, Dec 11 2008
STATUS
approved