login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064179 Infinitary version of Moebius function: infinitary_MoebiusMu of n, equal to mu(n) iff mu(n) differs from zero, else 1 or -1 depending on whether the sum of the binary digits of the exponents in the prime decomposition of n is even or odd. 7
1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Apparently the (ordinary) Dirichlet inverse of A050377. - R. J. Mathar, Jul 15 2010

Also analog of Liouville's function (A008836) in Fermi-Dirac arithmetic, where role of primes play terms of A050376 (see examples). - Vladimir Shevelev, Oct 28 2013.

REFERENCES

V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian)

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

G. L. Cohen, On an integers' infinitary divisors, Math. Comp. 54 (1990) 395-411

G. L. Cohen, P. Hagis, Jr, Arithmetic functions associated with the infinitary divisors of an integer, Internat. J. Math. Math. Sci. 16 (2) (1993) 373-384

S. Litsyn and V. S. Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from exponents in factorization of n

FORMULA

From Vladimir Shevelev Feb 20 2011: (Start)

Sum_{d runs through i-divisors of n} a(d)=1 if n=1, or 0 if n>1; Sum_{d runs through i-divisors of n} a(d)/d = A091732(n)/n.

Infinitary Moebius inversion:

If Sum_{d runs through i-divisors of n} f(d)=F(n), then f(n) = Sum_{d runs through i-divisors of n} a(d)*F(n/d). (End)

a(n) = (-1)^A064547(n). - R. J. Mathar, Apr 19 2011

Let k=k(n) be the number of terms of A050376 that divide n with odd maximal exponent. Then a(n) = (-1)^k. For example, if n=96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96)=3 and a(96)=-1. - Vladimir Shevelev, Oct 28 2013

EXAMPLE

G.f. = x - x^2 - x^3 - x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...

mu[45]=0 but iMoebiusMu[45]=1 because 45 = 3^2 * 5^1 and the binary digits of 2 and 1 add up to 2, an even number.

A unique representation of 48 over distinct terms of A050376 is 3*16. Since it contains even factors, then a(48)=1; for 54 such a representation is 2*3*9, thus a(54)=-1. - Vladimir Shevelev, Oct 28 2013

MATHEMATICA

iMoebiusMu[n_] := Switch[MoebiusMu[n], 1, 1, -1, -1, 0, If[OddQ[Plus@@(DigitCount[Last[Transpose[FactorInteger[n]]], 2, 1])], -1, 1]];

(* The Moebius inversion formula seems to hold for iMoebiusMu and the infinitary_divisors of n: if g[ n_ ] := Plus@@(f/@iDivisors[ n ]) for all n, then f[ n_ ]===Plus@@(iMoebiusMu[ # ]g[ n/# ])/@iDivisors[ n ]) *)

PROG

(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; (-1) ^ subst( Pol( binary(e)), x, 1)))}; /* Michael Somos, Jan 08 2008 */

(Scheme) (define (A064179 n) (expt -1 (A064547 n))) ;; Antti Karttunen, Nov 23 2017

CROSSREFS

Cf. A008683, A064547, A064175, A064176, A000028, A000379.

Sequence in context: A114523 A130151 A143431 * A065357 A119665 A121241

Adjacent sequences:  A064176 A064177 A064178 * A064180 A064181 A064182

KEYWORD

sign,mult

AUTHOR

Wouter Meeussen, Sep 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 21:59 EDT 2019. Contains 326109 sequences. (Running on oeis4.)