%I #24 Sep 07 2019 07:04:29
%S 2,5,17,37,197,69,503,1041,9649,9901,111431,113741,1506353,1532093,
%T 1556117,3157279,54394463,18358381,352893319,71354639,24031221,
%U 24266365,563299563,1704771547,42976237267,43319457067,392849685203,395718022103,11556136074187
%N Sum of numerator and denominator in n-th harmonic number, 1 + 1/2 + 1/3 +...+ 1/n.
%C Numerator and denominator in definition have no common factors >1.
%H Brian Hayes, <a href="http://bit-player.org/2017/a-tantonalizing-problem">A Tantonalizing Problem</a>
%e The 3rd harmonic number is 11/6. So a(3) = 11 + 6 = 17.
%p h:= n-> numer(sum(1/k,k=1..n))+denom(sum(1/k,k=1..n)): seq(h(n),n=1..30); # _Emeric Deutsch_, Nov 18 2004
%t Numerator[#]+Denominator[#]&/@HarmonicNumber[Range[30]] (* _Harvey P. Dale_, Jul 04 2017 *)
%o (PARI) a(n) = my(h=sum(k=1, n, 1/k)); numerator(h) + denominator(h); \\ _Michel Marcus_, Sep 07 2019
%Y Cf. A001008, A002805, A064167, A064169.
%K nonn,easy
%O 1,1
%A _Leroy Quet_, Sep 19 2001
%E More terms from _Emeric Deutsch_, Nov 18 2004