login
Primes p such that (x1*x2*..xk)^(x1+x2+..xk)=(x1+x2+..xk)^(x1*x2*...xk) where x1x2..xk are the digits of p in base 10.
0

%I #15 Jun 17 2023 16:55:46

%S 2,3,5,7,211,2141,2411,4211,11251,12511,15121,21221,25111,1112171,

%T 1127111,1172111,1271111,7112111,11112811,11128111,11218111,12111811,

%U 12118111,12181111,18211111,81111211,81112111,1111411141,4111111141,4111411111

%N Primes p such that (x1*x2*..xk)^(x1+x2+..xk)=(x1+x2+..xk)^(x1*x2*...xk) where x1x2..xk are the digits of p in base 10.

%e 211 belongs to the sequence because (2*1*1)^(2+1+1)=(2+1+1)^(2*1*1)

%Y Intersection of A000040 and A064158.

%K nonn,base,more

%O 1,1

%A _Felice Russo_, Sep 14 2001

%E More terms from _Jason Earls_, Dec 05 2001

%E a(18)-a(30) from _Sean A. Irvine_, Jun 16 2023