login
A064146
Sum of non-unitary prime divisors (A034444, A056169) of central binomial coefficient C(n,floor(n/2)) (A001405). If A001405(n) is squarefree (A046098) then a(n)=0.
1
0, 0, 0, 0, 0, 2, 0, 0, 3, 5, 0, 2, 2, 2, 3, 3, 0, 2, 0, 2, 2, 2, 0, 2, 7, 7, 10, 10, 5, 5, 3, 3, 3, 5, 5, 7, 7, 7, 3, 5, 2, 2, 2, 2, 10, 10, 8, 10, 12, 12, 12, 12, 9, 9, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 7, 9, 7, 9, 5, 5, 0, 2, 2, 2, 7, 7, 14, 14, 7, 9, 12, 12, 5, 5, 10, 10, 10, 10, 5, 5, 12, 12, 12
OFFSET
1,6
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..7500 (first 1000 terms from Harry J. Smith)
FORMULA
a(n) = A063958(A001405(n)).
MAPLE
a:= n-> add(`if`(i[2]>1, i[1], 0), i=ifactors(binomial(n, iquo(n, 2)))[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 24 2018
MATHEMATICA
a[n_] := Sum[If[i[[2]] > 1, i[[1]], 0], {i, FactorInteger[ Binomial[n, Quotient[n, 2]]]}];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
PROG
(PARI) { for (n=1, 1000, f=factor(binomial(n, n\2))~; a=0; for (i=1, length(f), if (f[2, i]>1, a+=f[1, i])); write("b064146.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 09 2009
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 11 2001
STATUS
approved