login
Number of divisors of 12^n + 1 that are relatively prime to 12^m + 1 for all 0 < m < n.
6

%I #16 Jan 18 2019 13:56:37

%S 2,2,4,4,4,2,2,4,8,4,2,2,4,8,4,8,4,4,4,8,16,8,16,8,8,16,8,32,2,4,2,4,

%T 4,32,4,2,8,8,8,16,2,16,2,16,4,8,2,16,8,4,32,16,8,16,32,16,64,16,32,

%U 32,4,16,16,16,32,8,16,8,8,64,16,4,16,16,64,64,8,4,8

%N Number of divisors of 12^n + 1 that are relatively prime to 12^m + 1 for all 0 < m < n.

%H Sam Wagstaff, Cunningham Project, <a href="https://homes.cerias.purdue.edu/~ssw/cun/">Factorizations of 12^n+1, n<=240</a>

%t a = {1}; Do[ d = Divisors[ 12^n + 1 ]; l = Length[ d ]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[ a, d[ [ k ] ] ] ] == {1}, c++ ]; k++ ]; Print[ c ]; a = Union[ Flatten[ Append[ a, Transpose[ FactorInteger[ 12^n + 1 ] ][ [ 1 ] ] ] ] ], {n, 0, 48} ]

%o (PARI) a(n) = if (n==0, 2, sumdiv(12^n+1, d, vecsum(vector(n-1, k, gcd(d, 12^k+1) == 1)) == n-1)); \\ _Michel Marcus_, Jun 24 2018

%Y Cf. A064131, A064132, A064133, A064134, A064135, A064136.

%K nonn

%O 0,1

%A _Robert G. Wilson v_, Sep 10 2001

%E More terms from _Michel Marcus_, Jul 02 2018