login
A064107
Continued fraction quotients for e^e = 15.15426224... (A073226).
6
15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3
OFFSET
0,1
COMMENTS
It was conjectured (but remains unproved) that this sequence is infinite and aperiodic, but it is difficult to determine who first posed this problem. - Vladimir Reshetnikov, Apr 27 2013
EXAMPLE
15.154262241479264189760430... = 15 + 1/(6 + 1/(2 + 1/(13 + 1/(1 + ...)))). - Harry J. Smith, Apr 30 2009
MAPLE
with(numtheory): cfrac(evalf((exp(1))^(exp(1)), 2560), 256, 'quotients');
MATHEMATICA
ContinuedFraction[E^E, 100] (* Harvey P. Dale, Sep 29 2012 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(exp(1))); for (n=1, 20000, write("b064107.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009
CROSSREFS
Cf. A058287, A058288, A073226 (decimal expansion), A159825.
Sequence in context: A249996 A128251 A292307 * A116907 A351199 A277384
KEYWORD
cofr,nonn
AUTHOR
Labos Elemer, Sep 17 2001
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 05 2024
STATUS
approved