This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064053 Dragonette's sequence gamma(n). 5
 1, 0, -4, 4, -4, 4, -4, 8, -4, 0, -4, 8, -4, 0, -4, 4, -4, 0, 0, 8, -4, -4, -4, 8, 0, 0, 0, 4, -4, 0, -4, 8, -4, -4, 0, 8, 0, 0, -8, 4, -8, 0, 4, 8, -4, 0, -8, 8, 0, 0, -4, 4, -4, 0, -4, 12, -4, 0, 0, 8, -4, 0, -8, 0, -4, 4, 4, 8, -4, 0, -12, 8, 0, 0, 0, 4, -4, -4, -4, 8, -8, 0, 0, 8, 4, 4, -8, 0, -4, 0, 0, 4, -4, 0, -8, 12, 0, 0, 4, 0, -4, 0, -4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Gamma(n) is used to compute coefficients in series expansion of mock theta function f(q) via A[n]==Sum[P[r]gamma[n-r],{r,0,n}], with P the partition function A000041. REFERENCES G. E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1998, page 82, Example 5. MR1634067 (99c:11126) LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500. See page 496. Eric Weisstein's World of Mathematics, Mock Theta Function. FORMULA G.f.: 1 + 4 * Sum_{k>0} (-1)^k * x^(k*(3*k + 1)/2) / (1 + x^k). - Michael Somos, Jun 19 2003 Convolution of this sequence and A000041 is A000025. - Michael Somos, Jun 19 2003 a(n) = 4 * A096661(n) unless n=0. EXAMPLE G.f. = 1 - 4*x^2 + 4*x^3 - 4*x^4 + 4*x^5 - 4*x^6 + 8*x^7 - 4*x^8 - 4*x^10 + 8*x^11 - 4*x^12 - ... MATHEMATICA a[ n_]:= SeriesCoefficient[1 +4 *Sum[(-1)^k*x^(k*(3*k+1)/2)/(1+x^k), {k, Quotient[Sqrt[1 +24*n] - 1, 6]}], {x, 0, n}]; (* Michael Somos, Apr 08 2015 *) PROG (PARI) {a(n) = if( n<1, n==0, 4 * polcoeff( sum(k=1, (sqrtint(24*n + 1) - 1) \ 6, (-1)^k * x^((3*k^2 + k)/2) / (1 + x^k), x * O(x^n)), n))}; /* Michael Somos, Mar 13 2006 */ CROSSREFS Cf. A000025, A000039, A000041, A000199, A096661. Sequence in context: A103276 A059190 A085142 * A108893 A162281 A262690 Adjacent sequences:  A064050 A064051 A064052 * A064054 A064055 A064056 KEYWORD sign AUTHOR Eric W. Weisstein, Aug 28 2001 EXTENSIONS Entry revised by Michael Somos, Mar 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:44 EST 2019. Contains 329849 sequences. (Running on oeis4.)