login
A064033
Product of non-unitary divisors of binomial(n, floor(n/2)) or a(n) = 1 if all divisors are unitary. See A046098.
0
1, 1, 1, 1, 1, 20, 1, 1, 15876, 1016255020032, 1, 728933458176, 8670998958336, 19247673071478783248355557376, 1714723915100625, 752711194884611945703392100000000, 1, 31226235883841773375939805209600000000, 1, 1357651828905889565182743230460164655087616
OFFSET
1,6
FORMULA
a(n) = A061538(A001405(n)).
MATHEMATICA
f[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
PROG
(PARI) a(n) = apply(x -> x^((numdiv(x) - 2^omega(x))/2), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 13 2001
EXTENSIONS
a(18)-a(20) from Amiram Eldar, Jul 22 2024
STATUS
approved