%I #28 Feb 02 2021 20:07:16
%S 1,2,2,2,4,2,16,48,8,4,56,180,44,156,300,7936,10388,11516,9104,
%T 13469268,2684084,2418800,28468692,143007944,85509116,402570696,
%U 2287868888,204306960,48715166536,147160740856,317585614148
%N Length of period of the continued fraction for sqrt(n!).
%F a(n) = A003285(A000142(n)). - _Michel Marcus_, Sep 25 2019
%e Quotients for 10! are [[1904], [1, 15, 1, 13, 1, 15, 1, 3808]], so period length of 10! is 8.
%p with(numtheory): [seq(nops(cfrac(sqrt(k!),'periodic','quotients')[2]),k=2..16)];
%t Do[ Print[ Length[ Last[ ContinuedFraction[ Sqrt[ n! ]]]]], {n, 2, 24} ]
%Y Cf. A000142, A003285.
%K nonn,more
%O 2,2
%A _Labos Elemer_, Sep 18 2001
%E More terms from _Robert G. Wilson v_, Oct 01 2001
%E a(25)-a(28) from _Daniel Suteu_, Jan 24 2019
%E a(29) from _Chai Wah Wu_, Sep 23 2019
%E a(30) from _Chai Wah Wu_, Sep 25 2019
%E a(31) from _Chai Wah Wu_, Jan 27 2021
%E a(32) from _Chai Wah Wu_, Feb 02 2021