login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064001 Odd abundant numbers not divisible by 5. 6
81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729, 742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Or, odd abundant numbers that do not end in 5.

All terms below 2000000 are divisible by 21 (so by 3). Moreover, except for a few, most are divisible by 231. - Labos Elemer, Sep 15 2005

An odd abundant number (see A005231) not divisible by 3 nor 5 must have at least 15 distinct prime factors (e.g., 61#/5#*7^2*11*13*17, where # is primorial) and be >= 67#/5#*77 = A047802(3) ~ 2.0*10^25. -- The smallest non-primitive abundant number (cf. A006038) in this sequence is 7*a(1) = 567567 = a(14). - M. F. Hasler, Jul 27 2016

REFERENCES

David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 169 (Rev. ed. 1997).

LINKS

Harry J. Smith, Table of n, a(n) for n=1..1000

C. Rivera, Puzzle 329. Odd abundant numbers not divided by 2 or 3.

Jay L. Schiffman, Odd Abundant Numbers, Mathematical Spectrum, Volume 37, Number 2 (January 2005), pp 73-75.

MATHEMATICA

Select[ Range[ 1, 10^6, 2 ], DivisorSigma[ 1, # ] - 2# > 0 && Mod[ #, 5 ] != 0 & ]

ta={{0}}; Do[g=n; s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&!Equal[Mod[n, 2], 0]&& !Equal[Mod[n, 5], 0], Print[n]; ta=Append[ta, n]], {n, 1, 2000000}] ta=Delete[ta, 1] (* Labos Elemer, Sep 15 2005 *)

PROG

(PARI) { n=0; forstep (m=1, 10^9, 2, if (m%5 && sigma(m) > 2*m, write("b064001.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 05 2009

CROSSREFS

Cf. A005231, A110585.

Sequence in context: A069304 A157664 A218106 * A252625 A233994 A237942

Adjacent sequences:  A063998 A063999 A064000 * A064002 A064003 A064004

KEYWORD

nonn

AUTHOR

Harvey P. Dale, Sep 17 2001

EXTENSIONS

More terms from Robert G. Wilson v, Sep 28 2001

Further terms from Labos Elemer, Sep 15 2005

Entry revised by N. J. A. Sloane, Mar 28 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 12:03 EDT 2019. Contains 326177 sequences. (Running on oeis4.)