This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063990 Amicable numbers. 106

%I

%S 220,284,1184,1210,2620,2924,5020,5564,6232,6368,10744,10856,12285,

%T 14595,17296,18416,63020,66928,66992,67095,69615,71145,76084,79750,

%U 87633,88730,100485,122265,122368,123152,124155,139815,141664,142310

%N Amicable numbers.

%C A pair of numbers x and y is called amicable if the sum of the proper divisors of either one is equal to the other. The smallest pair is x = 220, y = 284.

%C The sequence lists the amicable numbers in increasing order. Note that the pairs x, y are not adjacent to each other in the list. See also A002025 for the x's, A002046 for the y's.

%C Theorem: If the three numbers p = 3*(2^(n-1)) - 1, q = 3*(2^n) - 1 and r = 9*(2^(2n-1)) - 1 are all prime where n >= 2, then p*q*(2^n) and r*(2^n) are amicable numbers. This 9th century theorem is due to Thabit ibn Kurrah (see for example, the History of Mathematics by David M. Burton, 6th ed., p. 510). - _Mohammad K. Azarian_, May 19 2008

%C The first time a pair ordered by its first element is not adjacent is x = 63020, y = 76084 which correspond to a(17) and a(23), respectively. - _Omar E. Pol_, Jun 22 2015

%C For amicable pairs see A259180 and also A259933. - _Omar E. Pol_, Jul 15 2015

%C First differs from A259180 (amicable pairs) at a(18). - _Omar E. Pol_, Jun 01 2017

%C Sierpinski (1964), page 176, mentions Erdos's work on the number of pairs of amicable numbers <= x. - _N. J. A. Sloane_, Dec 27 2017

%D Scott T. Cohen, Mathematical Buds, Ed. H. D. Ruderman, Vol. 1 Chap. VIII pp. 103-126 Mu Alpha Theta 1984.

%D P. Erdos, On amicable numbers, Pub. Math. Debrecen, 4 (1955), 108-111.

%D Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 90.

%D W. Sierpinski, Elementary Theory of Numbers, Panst. Wyd. Nauk, Warsaw, 1964.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 145-7, Penguin Books 1987.

%H T. D. Noe, <a href="/A063990/b063990.txt">Table of n, a(n) for n = 1..77977</a> (terms < 10^14 from Pedersen's tables)

%H Titu Andreescu, <a href="http://staff.imsa.edu/math/journal/volume3/articles/NumberTrivia.pdf">Number Theory Trivia: Amicable Numbers</a>

%H Titu Andreescu, <a href="http://britton.disted.camosun.bc.ca/amicable.html">Number Theory Trivia: Amicable Numbers</a>

%H Anonymous, <a href="http://nautilus.fis.uc.pt/mn/i_amigos/amigos.swf">Amicable Pairs Applet Test</a>

%H Sergei Chernykh, <a href="/A063990/a063990-6M.zip">Table of n, a(n) for n = 1..823818, zipped file</a> (results of an exhaustive search for all amicable pairs with smaller member < 10^17)

%H Sergei Chernykh, <a href="http://sech.me/ap/">Amicable pairs list</a>

%H Germano D'Abramo, <a href="http://arXiv.org/abs/math.HO/0501402">On Amicable Numbers With Different Parity</a>, arXiv:math/0501402 [math.HO], 2005-2007.

%H Leonhard Euler, <a href="http://arXiv.org/abs/math.HO/0409196">On amicable numbers</a>, arXiv:math/0409196 [math.HO], 2004-2009.

%H Steven Finch, <a href="/A000396/a000396.pdf">Amicable Pairs and Aliquot Sequences</a>, 2013. [Cached copy, with permission of the author]

%H Mariano García, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/GARCIA/millionc.html">A Million New Amicable Pairs</a>, J. Integer Sequences, 4 (2001), #01.2.6.

%H Mariano García, Jan Munch Pedersen, Herman te Riele, <a href="http://oai.cwi.nl/oai/asset/4143/04143D.pdf">Amicable pairs, a survey</a>, Report MAS-R0307, Centrum Wiskunde & Informatica.

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/math09/ami02.htm">Amicable Numbers:first 236 pairs(smaller member<10^8) fully factorized</a>

%H David Moews, <a href="http://djm.cc/amicable2.txt">A List Of The First 5001 Amicable Pairs</a>

%H David and P. C. Moews, <a href="http://djm.cc/amicable.txt">A List Of Amicable Pairs Below 2.01*10^11</a>

%H Number Theory List, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A1=ind9308&amp;L=nmbrthry">NMBRTHRY Archives--August 1993</a>

%H J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Broken link]

%H J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Via Internet Archive Wayback-Machine]

%H J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a> [Cached copy, pdf file only]

%H Ivars Peterson, MathTrek, <a href="http://www.maa.org/mathland/mathtrek_2_26_01.html">Appealing Numbers</a>

%H Ivars Peterson, MathTrek, <a href="http://www.maa.org/mathland/mathtrek_02_02_04.html">Amicable Pairs, Divisors and a New Record</a>

%H P. Pollack, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pollack/pollack3.html">Quasi-Amicable Numbers are Rare</a>, J. Int. Seq. 14 (2011) # 11.5.2

%H Carl Pomerance, <a href="https://math.dartmouth.edu/~carlp/amicablesv3.pdf">On amicable numbers</a> (2015)

%H Herman J. J. te Riele, <a href="http://dx.doi.org/10.1090/S0025-5718-1984-0725997-0">On generating new amicable pairs from given amicable pairs</a>, Math. Comp. 42 (1984), 219-223.

%H Herman J. J. te Riele, <a href="http://dx.doi.org/10.1090/S0025-5718-1986-0842142-3">Computation of all the amicable pairs below 10^10</a>, Math. Comp., 47 (1986), 361-368 and Supplement pp. S9-S40.

%H Herman J. J. te Riele, <a href="http://oai.cwi.nl/oai/asset/2246/2246A.pdf">A New Method for Finding Amicable Pairs</a>, Proceedings of Symposia in Applied Mathematics, Volume 48, 1994.

%H Ed Sandifer, <a href="http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2025%20amicable%20numbers.pdf">Amicable numbers</a>

%H Gérard Villemin's Almanach of Numbers, <a href="http://villemin.gerard.free.fr/Wwwgvmm/Decompos/Amiable.htm">Nombres amiables et sociables</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AmicablePair.html">Amicable Pair</a>

%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Amicable_number">Amicable number</a>

%F Pomerance shows that there are at most x/exp(sqrt(log x log log log x)/(2 + o(1))) terms up to x for sufficiently large x. - _Charles R Greathouse IV_, Jul 21 2015

%p F:= proc(t) option remember; numtheory:-sigma(t)-t end proc:

%p select(t -> F(t) <> t and F(F(t))=t, [\$1.. 200000]); # _Robert Israel_, Jun 22 2015

%t s[n_] := DivisorSigma[1, n] - n; AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False]; Select[Range[10^6], AmicableNumberQ[ # ] &] (* _Ant King_, Jan 02 2007 *)

%o (PARI) aliquot(n)=sigma(n)-n

%o isA063990(n)={local(a);a=aliquot(n);a<>n && aliquot(a)==n} \\ _Michael B. Porter_, Apr 13 2010

%o (Python)

%o from sympy import divisors

%o A063990 = [n for n in xrange(1,10**5) if sum(divisors(n))-2*n and not sum(divisors(sum(divisors(n))-n))-sum(divisors(n))] # _Chai Wah Wu_, Aug 14 2014

%Y Union of A002025 and A002046.

%Y A180164 (gives for each pair (x, y) the value x+y = sigma(x)+sigma(y)).

%Y Cf. A259180.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Sep 18 2001

%E Comment about the first not adjacent pair being (67095, 71145) removed by _Michel Marcus_, Aug 21 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 17:26 EDT 2018. Contains 300990 sequences. (Running on oeis4.)