This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063990 Amicable numbers. 106

%I

%S 220,284,1184,1210,2620,2924,5020,5564,6232,6368,10744,10856,12285,

%T 14595,17296,18416,63020,66928,66992,67095,69615,71145,76084,79750,

%U 87633,88730,100485,122265,122368,123152,124155,139815,141664,142310

%N Amicable numbers.

%C A pair of numbers x and y is called amicable if the sum of the proper divisors of either one is equal to the other. The smallest pair is x = 220, y = 284.

%C The sequence lists the amicable numbers in increasing order. Note that the pairs x, y are not adjacent to each other in the list. See also A002025 for the x's, A002046 for the y's.

%C Theorem: If the three numbers p = 3*(2^(n-1)) - 1, q = 3*(2^n) - 1 and r = 9*(2^(2n-1)) - 1 are all prime where n >= 2, then p*q*(2^n) and r*(2^n) are amicable numbers. This 9th century theorem is due to Thabit ibn Kurrah (see for example, the History of Mathematics by David M. Burton, 6th ed., p. 510). - _Mohammad K. Azarian_, May 19 2008

%C The first time a pair ordered by its first element is not adjacent is x = 63020, y = 76084 which correspond to a(17) and a(23), respectively. - _Omar E. Pol_, Jun 22 2015

%C For amicable pairs see A259180 and also A259933. - _Omar E. Pol_, Jul 15 2015

%C First differs from A259180 (amicable pairs) at a(18). - _Omar E. Pol_, Jun 01 2017

%D Scott T. Cohen, Mathematical Buds, Ed. H. D. Ruderman, Vol. 1 Chap. VIII pp. 103-126 Mu Alpha Theta 1984.

%D Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 90.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 145-7, Penguin Books 1987.

%H T. D. Noe, <a href="/A063990/b063990.txt">Table of n, a(n) for n = 1..77977</a> (terms < 10^14 from Pedersen's tables)

%H Titu Andreescu, <a href="http://staff.imsa.edu/math/journal/volume3/articles/NumberTrivia.pdf">Number Theory Trivia: Amicable Numbers</a>

%H Titu Andreescu, <a href="http://britton.disted.camosun.bc.ca/amicable.html">Number Theory Trivia: Amicable Numbers</a>

%H Anonymous, <a href="http://nautilus.fis.uc.pt/mn/i_amigos/amigos.swf">Amicable Pairs Applet Test</a>

%H Sergei Chernykh, <a href="/A063990/a063990-6M.zip">Table of n, a(n) for n = 1..823818, zipped file</a> (results of an exhaustive search for all amicable pairs with smaller member < 10^17)

%H Sergei Chernykh, <a href="http://sech.me/ap/">Amicable pairs list</a>

%H Germano D'Abramo, <a href="http://arXiv.org/abs/math.HO/0501402">On Amicable Numbers With Different Parity</a>, arXiv:math/0501402 [math.HO], 2005-2007.

%H Leonhard Euler, <a href="http://arXiv.org/abs/math.HO/0409196">On amicable numbers</a>, arXiv:math/0409196 [math.HO], 2004-2009.

%H Steven Finch, <a href="/A000396/a000396.pdf">Amicable Pairs and Aliquot Sequences</a>, 2013. [Cached copy, with permission of the author]

%H Mariano García, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/GARCIA/millionc.html">A Million New Amicable Pairs</a>, J. Integer Sequences, 4 (2001), #01.2.6.

%H Mariano García, Jan Munch Pedersen, Herman te Riele, <a href="http://oai.cwi.nl/oai/asset/4143/04143D.pdf">Amicable pairs, a survey</a>, Report MAS-R0307, Centrum Wiskunde & Informatica.

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/math09/ami02.htm">Amicable Numbers:first 236 pairs(smaller member<10^8) fully factorized</a>

%H David Moews, <a href="http://djm.cc/amicable2.txt">A List Of The First 5001 Amicable Pairs</a>

%H David and P. C. Moews, <a href="http://djm.cc/amicable.txt">A List Of Amicable Pairs Below 2.01*10^11</a>

%H Number Theory List, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A1=ind9308&amp;L=nmbrthry">NMBRTHRY Archives--August 1993</a>

%H J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Broken link]

%H J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Via Internet Archive Wayback-Machine]

%H J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a> [Cached copy, pdf file only]

%H Ivars Peterson, MathTrek, <a href="http://www.maa.org/mathland/mathtrek_2_26_01.html">Appealing Numbers</a>

%H Ivars Peterson, MathTrek, <a href="http://www.maa.org/mathland/mathtrek_02_02_04.html">Amicable Pairs, Divisors and a New Record</a>

%H P. Pollack, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pollack/pollack3.html">Quasi-Amicable Numbers are Rare</a>, J. Int. Seq. 14 (2011) # 11.5.2

%H Carl Pomerance, <a href="https://math.dartmouth.edu/~carlp/amicablesv3.pdf">On amicable numbers</a> (2015)

%H Herman J. J. te Riele, <a href="http://dx.doi.org/10.1090/S0025-5718-1984-0725997-0">On generating new amicable pairs from given amicable pairs</a>, Math. Comp. 42 (1984), 219-223.

%H Herman J. J. te Riele, <a href="http://dx.doi.org/10.1090/S0025-5718-1986-0842142-3">Computation of all the amicable pairs below 10^10</a>, Math. Comp., 47 (1986), 361-368 and Supplement pp. S9-S40.

%H Herman J. J. te Riele, <a href="http://oai.cwi.nl/oai/asset/2246/2246A.pdf">A New Method for Finding Amicable Pairs</a>, Proceedings of Symposia in Applied Mathematics, Volume 48, 1994.

%H Ed Sandifer, <a href="http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2025%20amicable%20numbers.pdf">Amicable numbers</a>

%H Gérard Villemin's Almanach of Numbers, <a href="http://villemin.gerard.free.fr/Wwwgvmm/Decompos/Amiable.htm">Nombres amiables et sociables</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AmicablePair.html">Amicable Pair</a>

%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Amicable_number">Amicable number</a>

%F Pomerance shows that there are at most x/exp(sqrt(log x log log log x)/(2 + o(1))) terms up to x for sufficiently large x. - _Charles R Greathouse IV_, Jul 21 2015

%p F:= proc(t) option remember; numtheory:-sigma(t)-t end proc:

%p select(t -> F(t) <> t and F(F(t))=t, [\$1.. 200000]); # _Robert Israel_, Jun 22 2015

%t s[n_] := DivisorSigma[1, n] - n; AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False]; Select[Range[10^6], AmicableNumberQ[ # ] &] (* _Ant King_, Jan 02 2007 *)

%o (PARI) aliquot(n)=sigma(n)-n

%o isA063990(n)={local(a);a=aliquot(n);a<>n && aliquot(a)==n} \\ _Michael B. Porter_, Apr 13 2010

%o (Python)

%o from sympy import divisors

%o A063990 = [n for n in xrange(1,10**5) if sum(divisors(n))-2*n and not sum(divisors(sum(divisors(n))-n))-sum(divisors(n))] # _Chai Wah Wu_, Aug 14 2014

%Y Union of A002025 and A002046.

%Y A180164 (gives for each pair (x, y) the value x+y = sigma(x)+sigma(y)).

%Y Cf. A259180.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Sep 18 2001

%E Comment about the first not adjacent pair being (67095, 71145) removed by _Michel Marcus_, Aug 21 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.