n = 3, 0 interior points, D^2 of enclosing circle = 2
\(n = 4, \) 0 interior points, \(D^2 \) of enclosing circle = 2
$n = 5$, 1 interior point, D^2 of enclosing circle $= \frac{50}{9}$
n = 6, 1 interior point, \(D^2 \) of enclosing circle = 8
$n = 7$, 4 interior points, D^2 of enclosing circle $= 10$
n = 8, 4 interior points, D^2 of enclosing circle = 10
n = 9, 7 interior points, D^2 of enclosing circle = $\frac{1250}{49}$
n = 10, 10 interior points, D^2 of enclosing circle = 29
n = 11, 17 interior points, D² of enclosing circle = 40
$n = 12, 19$ interior points, D^2 of enclosing circle $= 52$
\(n = 13, \) 27 interior points, \(D^2 \) of enclosing circle = 73
n = 14, 34 interior points, D^2 of enclosing circle = 73
$n = 15$, 45 interior points, D^2 of enclosing circle = 82
$n = 16$, 52 interior points, D^2 of enclosing circle = 82
$n = 17$, 68 interior points, D^2 of enclosing circle $= 23290/169$
n = 19, 98 interior points, D^2 of enclosing circle = 202
$n = 20, \text{ 112 interior points, } D^2 \text{ of enclosing circle } = 226$
$n = 21$, 135 interior points, D^2 of enclosing circle = 317
$n = 22$, 154 interior points, D^2 of enclosing circle = 317
$n = 23, 183$ interior points, D^2 of enclosing circle $= 365$