login
A063964
Numbers k such that k and k+1 have the same sum of squarefree divisors, or sqf(k) = sqf(k+1), where sqf(k) = A048250(k).
1
11, 14, 224, 957, 1334, 1634, 2685, 9347, 13915, 16260, 20145, 20335, 33998, 37236, 42251, 42818, 51624, 55308, 56419, 56975, 71874, 74918, 77748, 79824, 79826, 79833, 84134, 93632, 106600, 111506, 120680, 122073, 138237, 142116, 147454
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..170 from Harry J. Smith)
MATHEMATICA
sqs[n_] := Times@@(1 + FactorInteger[n][[;; , 1]]); seq={}; s1 = 1; Do[s2 = sqs[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq (* Amiram Eldar, Aug 18 2019 *)
PROG
(PARI) sqf(n) = sumdiv(n, d, if(issquarefree(d), d, 0)); for(n=1, 10^7, if(sqf(n)==sqf(n+1), print(n)))
(PARI) { n=0; s=0; for (m=1, 10^9, t=sumdiv(m + 1, d, if(issquarefree(d), d, 0)); if(s==t, write("b063964.txt", n++, " ", m); if (n==170, break)); s=t ) } \\ Harry J. Smith, Sep 04 2009
CROSSREFS
Cf. A048250.
Sequence in context: A344842 A101840 A061087 * A349224 A262721 A174952
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Sep 04 2001
STATUS
approved