



0, 2, 3, 0, 5, 5, 7, 0, 0, 7, 11, 3, 13, 9, 8, 0, 17, 2, 19, 5, 10, 13, 23, 3, 0, 15, 0, 7, 29, 10, 31, 0, 14, 19, 12, 0, 37, 21, 16, 5, 41, 12, 43, 11, 5, 25, 47, 3, 0, 2, 20, 13, 53, 2, 16, 7, 22, 31, 59, 8, 61, 33, 7, 0, 18, 16, 67, 17, 26, 14, 71, 0, 73, 39, 3, 19, 18, 18, 79, 5, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000


FORMULA

a(n*m) = a(n) + a(m)  a(gcd(n^2, m))  a(gcd(n, m^2)) for all n and m > 0 (conjecture).  Velin Yanev, Feb 17 2019


EXAMPLE

Prime factors in 420 which have exponent=1 (i.e., unitary pdivisors) are {5,7}; sum = 12, so a(420)=12. (The sum of all its pdivisors, unitary and nonunitary, is A008472(420) = 17.)


MATHEMATICA

Table[DivisorSum[n, # &, And[PrimeQ@ #, GCD[#, n/#] == 1] &], {n, 81}] (* Michael De Vlieger, Feb 17 2019 *)


PROG

(PARI) { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[2, i]==1, a+=f[1, i])); write("b063956.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009


CROSSREFS

Cf. A008472, A034444, A056169A056172, A034387.
Sequence in context: A294141 A265513 A140508 * A128214 A307865 A219695
Adjacent sequences: A063953 A063954 A063955 * A063957 A063958 A063959


KEYWORD

nonn


AUTHOR

Labos Elemer, Sep 04 2001


STATUS

approved



