login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063896 2^Fibonacci(n) - 1. 11

%I

%S 0,1,1,3,7,31,255,8191,2097151,17179869183,36028797018963967,

%T 618970019642690137449562111,

%U 22300745198530623141535718272648361505980415

%N 2^Fibonacci(n) - 1.

%C The recurrence can also be written a(n)+1=(a(n-1)+1)*(a(n-2)+1) or log_p(a(n)+1)=log_p(a(n-1)+1)+log_p(a(n-2)+1), respectively. Setting a(1)=p-1 for any natural p>1, it follows that log_p(a(n)+1)=Fib(n). Hence any other sequence p^Fib(n)-1 could also serve as a valid solution to that recurrence, only depending on the value of the term a(1). - _Hieronymus Fischer_, Jun 27 2007

%C Written in binary, a(n) contains Fib(n) 1's (Fib(n)=A000045(n)). Thus the sequence converted to base-2 is A007088(a(n))=0,1,1,11,111,11111,11111111,... - _Hieronymus Fischer_, Jun 27 2007

%F The solution to the recurrence a(0) = 0; a(1) = 1; a(n) = a(n-1)*a(n-2) + a(n-1) + a(n-2).

%F a(n)=A000301(n+1)-1. - _R. J. Mathar_, Apr 26 2007

%F a(n)=a(n-2)*2^ceiling(log_2(a(n-1)))+a(n-1) for n>1. - _Hieronymus Fischer_, Jun 27 2007

%t a[0, k_] = 0; a[1, k_] = 1; a[n_, k_] := (k - 1)*a[n - 1, k]*a[n - 2, k] + a[n - 1, k] + a[n - 2, k]; Table[ a[n, 2], {n, 0, 14} ]

%t a=0;b=1;lst={a,b};Do[c=a*b+a+b;AppendTo[lst,c];a=b;b=c,{n,3*3!}];lst [From _Vladimir Joseph Stephan Orlovsky_, Sep 13 2009]

%t 2^Fibonacci[Range[0,15]]-1 (* _Harvey P. Dale_, May 20 2014 *)

%t LinearRecurrence[{1 + #2, 1}, {0, 1}, 14] (* _Robert G. Wilson v_, Jul 12 2014 *)

%Y Cf. A000045 and A000301.

%Y Cf. A000045, A061107.

%Y See A131293 for a base-10 analog with Fib(n) 1's.

%K nonn

%O 0,4

%A _Robert G. Wilson v_, Aug 29 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 02:15 EST 2014. Contains 252291 sequences.