login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063896 a(n) = 2^Fibonacci(n) - 1. 14
0, 1, 1, 3, 7, 31, 255, 8191, 2097151, 17179869183, 36028797018963967, 618970019642690137449562111, 22300745198530623141535718272648361505980415 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The recurrence can also be written a(n)+1 = (a(n-1)+1)*(a(n-2)+1) or log_p(a(n)+1) = log_p(a(n-1)+1) + log_p(a(n-2)+1), respectively. Setting a(1)=p-1 for any natural p>1, it follows that log_p(a(n)+1)=Fib(n). Hence any other sequence p^Fib(n)-1 could also serve as a valid solution to that recurrence, depending only on the value of the term a(1). - Hieronymus Fischer, Jun 27 2007

Written in binary, a(n) contains Fib(n) 1's (Fib(n)=A000045(n)). Thus the sequence converted to base-2 is A007088(a(n)) = 0, 1, 1, 11, 111, 11111, 11111111, ... . - Hieronymus Fischer, Jun 27 2007

LINKS

Table of n, a(n) for n=0..12.

FORMULA

The solution to the recurrence a(0) = 0; a(1) = 1; a(n) = a(n-1)*a(n-2) + a(n-1) + a(n-2).

a(n) = A000301(n+1) - 1. - R. J. Mathar, Apr 26 2007

a(n) = a(n-2)*2^ceiling(log_2(a(n-1))) + a(n-1) for n>1. - Hieronymus Fischer, Jun 27 2007

MAPLE

a:= n-> 2^(<<0|1>, <1|1>>^n)[1, 2]-1:

seq(a(n), n=0..15);  # Alois P. Heinz, Aug 12 2017

MATHEMATICA

a[0, k_] = 0; a[1, k_] = 1; a[n_, k_] := (k - 1)*a[n - 1, k]*a[n - 2, k] + a[n - 1, k] + a[n - 2, k]; Table[ a[n, 2], {n, 0, 14} ]

a=0; b=1; lst={a, b}; Do[c=a*b+a+b; AppendTo[lst, c]; a=b; b=c, {n, 3*3!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *)

2^Fibonacci[Range[0, 15]]-1 (* Harvey P. Dale, May 20 2014 *)

RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == (a[n - 1] + 1)*(a[n - 2] + 1) - 1}, a[n], {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)

PROG

(PARI) a(n) = 2^fibonacci(n) - 1 \\ Charles R Greathouse IV, Oct 03 2016

CROSSREFS

Cf. A000045, A000301, A061107.

See A131293 for a base-10 analog with Fib(n) 1's.

Sequence in context: A073917 A030521 A105767 * A277028 A156895 A074047

Adjacent sequences:  A063893 A063894 A063895 * A063897 A063898 A063899

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Aug 29 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.