

A063853


Triangle T(n,k) (n >= 3, k = 1..n2) read by rows giving number of abstract order types of configurations of n points in nk dimensions.


6



1, 1, 3, 1, 5, 11, 1, 8, 55, 93, 1, 11, 204, 5083, 2121, 1, 15, 705, 505336, 10775236, 122508, 1, 19, 2293
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,3


REFERENCES

Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.


LINKS

Table of n, a(n) for n=3..26.
L. Finschi, Homepage of Oriented Matroids
L. Finschi and K. Fukuda, Complete combinatorial generation of small point set configurations and hyperplane arrangements, pp. 97100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 1315, 2001.


EXAMPLE

1; 1,3; 1,5,11; 1,8,55,93; ...


CROSSREFS

Diagonals give A063854, A063855, A063856, A246990, A246991. Row sums give A063857.
Sequence in context: A286910 A093905 A324017 * A219078 A266033 A105064
Adjacent sequences: A063850 A063851 A063852 * A063854 A063855 A063856


KEYWORD

nonn,tabl,nice


AUTHOR

N. J. A. Sloane, Aug 26 2001


STATUS

approved



