login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063828 Smallest m associated with n-th Pillai prime (A063980). 3
14, 18, 15, 8, 18, 9, 23, 13, 86, 16, 16, 50, 102, 61, 64, 210, 97, 31, 9, 93, 40, 45, 63, 220, 91, 122, 35, 85, 198, 93, 128, 316, 366, 74, 300, 151, 290, 15, 400, 282, 22, 188, 167, 191, 360, 426, 274, 271, 456, 278, 229, 324, 135, 498, 189 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Noe)

G. E. Hardy and M. V. Subbarao, A modified problem of Pillai and some related questions, Amer. Math. Monthly 109 (2002), no. 6, 554-559.

EXAMPLE

14!+1 = 0 mod 23, while 23 is not 1 mod 14.

MATHEMATICA

nn=1000; fact=1+Rest[FoldList[Times, 1, Range[nn]]]; t={}; Do[p=Prime[i]; m=2; While[m<p && !(Mod[p, m]!=1 && Mod[fact[[m]], p]==0), m++]; If[m<p, AppendTo[t, m]], {i, 2, PrimePi[nn]}]; t (* T. D. Noe, Apr 22 2011 *)

PROG

(PARI) first(p)=my(t=Mod(5040, p)); for(m=8, p, t*=m; if(t==-1 && p%m!=1, return(m))); 0

Pillai(p)=my(t=Mod(5040, p)); for(m=8, p-2, t*=m; if(t==-1 && p%m!=1, return(1))); 0

apply(first, select(Pillai, primes(300))) \\ Charles R Greathouse IV, Feb 10 2013

CROSSREFS

Cf. A211411.

Sequence in context: A165719 A154146 A113735 * A060504 A052026 A317743

Adjacent sequences:  A063825 A063826 A063827 * A063829 A063830 A063831

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 23, 2001

EXTENSIONS

More terms from Vladeta Jovovic, Sep 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 00:40 EST 2020. Contains 331030 sequences. (Running on oeis4.)