%I #29 Nov 15 2023 06:03:46
%S 1,2,4,17,143,4890,461053,95052532
%N Number of nonisomorphic oriented matroids with n points in 2 dimensions.
%H J. Ferté, V. Pilaud and M. Pocchiola, <a href="http://arxiv.org/abs/1009.1575">On the number of simple arrangements of five double pseudolines</a>, arXiv:1009.1575 [cs.CG], 2010; Discrete Comput. Geom. 45 (2011), 279-302.
%H Stefan Felsner and Jacob E. Goodman, <a href="https://www.csun.edu/~ctoth/Handbook/chap5.pdf">Pseudoline Arrangements</a>, Chapter 5 of Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [Specific reference for this sequence] - _N. J. A. Sloane_, Nov 14 2023
%H Lukas Finschi, <a href="http://dx.doi.org/10.3929/ethz-a-004255224">A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids</a>, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
%H Lukas Finschi, <a href="https://finschi.com/math/om/">Homepage of Oriented Matroids</a>
%H L. Finschi and K. Fukuda, <a href="http://www.cccg.ca/proceedings/2001/finschi-1053.ps.gz">Complete combinatorial generation of small point set configurations and hyperplane arrangements</a>, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
%H Fukuda, Komei; Miyata, Hiroyuki; Moriyama, Sonoko. <a href="http://arxiv.org/abs/1204.0645">Complete Enumeration of Small Realizable Oriented Matroids</a>, arXiv:1204.0645 [math.CO], 2012; Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. - From _N. J. A. Sloane_, Feb 16 2013
%H Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors, <a href="https://www.csun.edu/~ctoth/Handbook/HDCG3.html">Handbook of Discrete and Computational Geometry</a>, CRC Press, 2017, see Table 5.6.1. [General reference for 2017 edition of the Handbook] - _N. J. A. Sloane_, Nov 14 2023
%Y A diagonal of A063804.
%K nonn,more
%O 3,2
%A _N. J. A. Sloane_, Aug 20 2001