login
A063799
Numbers k such that (k+3, k+5, k+17, k+257, k+65537) are all primes.
2
14, 26, 176, 806, 1604, 1994, 2264, 3254, 3326, 4226, 4646, 9716, 9854, 11486, 13994, 15644, 15884, 17186, 19424, 21584, 22274, 23054, 25166, 25304, 26696, 30386, 34124, 34256, 36524, 37304, 42176, 43784, 49664, 53144, 56906, 58436
OFFSET
1,1
COMMENTS
3, 5, 17 and 65537 are the known Fermat primes (see A019434).
The counting function p(N) seems to follows the law: p(N)~c*N^(gamma) where c is a positive constant and gamma the Euler function. If so the sequence should be infinite.
LINKS
EXAMPLE
a(1)=14 because 14+3 = 17, 14+5 = 19, 14+17 = 31, 14+257 = 271, 14+65537 = 65551 are all primes.
MATHEMATICA
Select[Range[60000], AllTrue[#+{3, 5, 17, 257, 65537}, PrimeQ]&] (* Harvey P. Dale, Oct 06 2024 *)
PROG
(PARI) { n=0; for (m=1, 10^9, if(isprime(m + 3) && isprime(m + 5) && isprime(m + 17) && isprime(m + 257) && isprime(m + 65537), write("b063799.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 31 2009
CROSSREFS
Cf. A019434.
Sequence in context: A155505 A086258 A372008 * A086451 A190991 A306985
KEYWORD
easy,nonn
AUTHOR
Felice Russo, Aug 20 2001
STATUS
approved