The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063759 Spherical growth series for modular group. 8
 1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - W. Edwin Clark, Oct 17 2008 REFERENCES P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,2) FORMULA G.f.: (1+3*x+2*x^2)/(1-2*x^2). a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011 a(2*n) = A151821(n+1); a(2*n+1) = A007283(n). - Reinhard Zumkeller, Dec 16 2013 EXAMPLE For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - W. Edwin Clark, Oct 17 2008 From Joerg Arndt, Nov 23 2012: (Start) There are a(6) = 16 such words of length 6: [ 1]   [ 1 2 1 2 1 2 ] [ 2]   [ 1 2 1 2 3 2 ] [ 3]   [ 1 2 3 2 1 2 ] [ 4]   [ 1 2 3 2 3 2 ] [ 5]   [ 2 1 2 1 2 1 ] [ 6]   [ 2 1 2 1 2 3 ] [ 7]   [ 2 1 2 3 2 1 ] [ 8]   [ 2 1 2 3 2 3 ] [ 9]   [ 2 3 2 1 2 1 ] [10]   [ 2 3 2 1 2 3 ] [11]   [ 2 3 2 3 2 1 ] [12]   [ 2 3 2 3 2 3 ] [13]   [ 3 2 1 2 1 2 ] [14]   [ 3 2 1 2 3 2 ] [15]   [ 3 2 3 2 1 2 ] [16]   [ 3 2 3 2 3 2 ] (End) MATHEMATICA CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2), {x, 0, 40}], x](* Jean-François Alcover, Mar 21 2011 *) Join[{1}, Transpose[NestList[{Last[#], 2First[#]}&, {3, 4}, 40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *) PROG (Haskell) import Data.List (transpose) a063759 n = a063759_list !! n a063759_list = concat \$ transpose [a151821_list, a007283_list] -- Reinhard Zumkeller, Dec 16 2013 (PARI) a(n)=([0, 1; 2, 0]^n*[1; 3])[1, 1] \\ Charles R Greathouse IV, Feb 09 2017 CROSSREFS Cf. A054886, A029744. The sequence (ternary strings) seems to be related to A029744 and A090989. Sequence in context: A298812 A299252 A299253 * A163978 A145751 A277099 Adjacent sequences:  A063756 A063757 A063758 * A063760 A063761 A063762 KEYWORD nonn,nice,easy AUTHOR N. J. A. Sloane, Aug 14 2001 EXTENSIONS Information from A145751 included by Joerg Arndt, Dec 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 22:02 EDT 2021. Contains 343090 sequences. (Running on oeis4.)