

A063740


Number of entries in InverseCototient[n].


5



1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, 5, 1, 7, 1, 8, 1, 5, 2, 6, 1, 9, 2, 6, 0, 4, 2, 10, 2, 4, 2, 5, 2, 7, 5, 4, 1, 8, 0, 9, 1, 6, 1, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


LINKS

T. D. Noe, Table of n, a(n) for n=2..10000


EXAMPLE

At n=1 InvCototient[1] has infinite number of elements, so skipped; n=101, InvCototient[101]={485,1157,1577,1817,2117,2201,2501,2537,10201}, including a(101)=8 terms; e.g. 485Phi[485]=485384=101. n=102, InvCototient[102]={202} has a(102)=1 number so that 202Phi[202]=102.


CROSSREFS

Cf. A000010, A051953, A063507.
Cf. A063748 (greatest solution to xphi(x)=n)
Sequence in context: A133771 A217612 A029254 * A072782 A122563 A204030
Adjacent sequences: A063737 A063738 A063739 * A063741 A063742 A063743


KEYWORD

nonn


AUTHOR

Labos Elemer, Aug 13 2001


STATUS

approved



