login
Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and ceiled up (where phi = tau = (sqrt(5)+1)/2).
5

%I #10 Feb 27 2024 07:28:30

%S 1,1,2,3,2,8,1,21,4,11,3,144,3,377,6,12,22,2584,7,6765,16,75,35,46368,

%T 19,7436,90,2619,105,832040,26,2178309,988,3400,611,20161,137,

%U 39088169,1598,23229,862,267914296,183,701408733,4896,35921,10947,4807526976

%N Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and ceiled up (where phi = tau = (sqrt(5)+1)/2).

%H Paolo Xausa, <a href="/A063708/b063708.txt">Table of n, a(n) for n = 0..1000</a>

%p with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(ceil(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];

%t Ceiling[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* _Paolo Xausa_, Feb 27 2024 *)

%Y Cf. A063707, A051258, A063704, A063706.

%K nonn

%O 0,3

%A _Antti Karttunen_, Aug 03 2001