login
Cyclotomic polynomials Phi_n at x=phi, divided by sqrt(5) and rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).
5

%I #15 Feb 27 2024 06:49:17

%S 1,0,1,2,2,7,1,20,4,10,2,143,2,376,5,12,21,2583,7,6764,15,75,34,46367,

%T 18,7435,89,2618,104,832039,25,2178308,987,3400,610,20161,136,

%U 39088168,1597,23229,861,267914295,182,701408732,4895,35921,10946,4807526975

%N Cyclotomic polynomials Phi_n at x=phi, divided by sqrt(5) and rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).

%H Paolo Xausa, <a href="/A063706/b063706.txt">Table of n, a(n) for n = 0..1000</a>

%p with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(round(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];

%t Join[{1}, Round[Simplify[Cyclotomic[Range[50], GoldenRatio]]/Sqrt[5]]] (* _Paolo Xausa_, Feb 27 2024 *)

%Y Cf. A063705, A051258, A063704, A063708.

%K nonn

%O 0,4

%A _Antti Karttunen_, Aug 03 2001

%E a(43) and a(47) corrected by _Sean A. Irvine_, May 08 2023