login
Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and floored down (where phi = tau = (sqrt(5)+1)/2).
5

%I #12 Feb 27 2024 07:28:08

%S 0,0,1,2,1,7,0,20,3,10,2,143,2,376,5,11,21,2583,6,6764,15,74,34,46367,

%T 18,7435,89,2618,104,832039,25,2178308,987,3399,610,20160,136,

%U 39088168,1597,23228,861,267914295,182,701408732,4895,35920,10946,4807526975

%N Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and floored down (where phi = tau = (sqrt(5)+1)/2).

%H Paolo Xausa, <a href="/A063704/b063704.txt">Table of n, a(n) for n = 0..1000</a>

%p with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(floor(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];

%t Floor[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* _Paolo Xausa_, Feb 27 2024 *)

%Y Cf. A063703, A051258, A063706, A063708.

%K nonn

%O 0,4

%A _Antti Karttunen_, Aug 03 2001

%E a(47) corrected by _Sean A. Irvine_, May 08 2023