This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063686 Triangular array: a(n,k) is the number of binary necklaces (no turning over) of length n whose longest run of 1's has length k. Table begins at n=0, k=0. 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 4, 2, 1, 1, 1, 1, 4, 6, 4, 2, 1, 1, 1, 1, 7, 11, 8, 4, 2, 1, 1, 1, 1, 9, 19, 14, 8, 4, 2, 1, 1, 1, 1, 14, 33, 27, 16, 8, 4, 2, 1, 1, 1, 1, 18, 56, 50, 30, 16, 8, 4, 2, 1, 1, 1, 1, 30, 101, 96, 59, 32, 16, 8, 4, 2, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS Column k=1 appears to be A032190(n), n=2,3,... LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1274 EXAMPLE Triangle begins: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 2, 1, 1, 1; 1, 2, 2, 1, 1, 1; 1, 4, 4, 2, 1, 1, 1; 1, 4, 6, 4, 2, 1, 1, 1; 1, 7, 11, 8, 4, 2, 1, 1, 1; 1, 9, 19, 14, 8, 4, 2, 1, 1, 1; 1, 14, 33, 27, 16, 8, 4, 2, 1, 1, 1; ... PROG (PARI) \\ here R(n) is A048887 transposed R(n)={Mat(vector(n, k, Col((1-x)/(1-2*x+x^(k+1)) - 1 + O(x*x^n))))} S(M)={matrix(#M-1, #M-1, n, k, if(k

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)