login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063653 Number of ways to tile a 9 X n rectangle with 1 X 1 and 2 X 2 tiles. 4
1, 1, 55, 341, 5933, 59925, 795611, 9167119, 113555791, 1355115601, 16484061769, 198549329897, 2403674442213, 29023432116879, 350917980468767, 4239961392742933, 51247532773412135, 619304595300705203 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(8) is number of ways can kings be placed on an 8 X 8 chessboard so that no two kings can attack each other. - Vaclav Kotesovec, Apr 02 2010

LINKS

Table of n, a(n) for n=0..17.

Index entries for linear recurrences with constant coefficients, signature (6, 110, -262, -2786, 5916, 25168, -53907, -95299, 197820, 193866, -340168, -228528, 279636, 137864, -108909, -33736, 20214, 2460, -1296).

FORMULA

a(n) = 6*a(n-1) + 110*a(n-2) - 262*a(n-3) - 2786*a(n-4) + 5916*a(n-5) + 25168*a(n-6) - 53907*a(n-7) - 95299*a(n-8) + 197820*a(n-9) + 193866*a(n-10) - 340168*a(n-11) - 228528*a(n-12) + 279636*a(n-13) + 137864*a(n-14) - 108909*a(n-15) - 33736*a(n-16) + 20214*a(n-17) + 2460*a(n-18) - 1296*a(n-19).

CROSSREFS

Cf. A001045, A054854, A054855, A063650, A063651, A063652, A063654.

Column k=9 of A245013.

Sequence in context: A250841 A250834 A020280 * A222348 A075740 A129217

Adjacent sequences:  A063650 A063651 A063652 * A063654 A063655 A063656

KEYWORD

nonn

AUTHOR

Reiner Martin (reinermartin(AT)hotmail.com), Jul 23 2001

EXTENSIONS

Subscripts in formula repaired by Ron Hardin, Dec 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 19:09 EST 2017. Contains 295919 sequences.