login
A063606
Smallest k >= 0 such that 7^k has exactly n 0's in its decimal representation.
9
0, 4, 9, 13, 25, 55, 39, 41, 45, 70, 69, 65, 75, 107, 109, 134, 167, 142, 156, 196, 157, 205, 214, 180, 213, 183, 162, 251, 263, 276, 268, 290, 306, 295, 369, 313, 332, 293, 353, 340, 357, 387, 367, 476, 334, 509, 363, 474, 454, 488, 453
OFFSET
0,2
MATHEMATICA
a = {}; Do[k = 0; While[ Count[ IntegerDigits[7^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
Module[{p7=DigitCount[#, 10, 0]&/@(7^Range[600]), nn=60}, Join[{0}, Flatten[ Table[ Position[p7, n, 1, 1], {n, nn}]]]] (* Harvey P. Dale, Apr 12 2022 *)
PROG
(PARI) A063606(n)=for(k=n, oo, #select(d->!d, digits(5^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018
CROSSREFS
Cf. A031146 (analog for 2^k), A063555 (analog for 3^k), A063575 (analog for 4^k), A063585 (for 5^k), A063596 (analog for 6^k).
Sequence in context: A048261 A340771 A333848 * A033287 A041323 A319217
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
STATUS
approved