login
A063596
Least k >= 0 such that 6^k has exactly n 0's in its decimal representation.
11
0, 10, 9, 13, 19, 43, 56, 41, 94, 79, 113, 100, 88, 112, 124, 127, 138, 176, 144, 175, 174, 168, 170, 210, 245, 228, 182, 237, 287, 260, 312, 321, 294, 347, 389, 365, 401, 386, 390, 419, 460, 425, 438, 426, 488, 490, 520, 458, 489, 521, 513
OFFSET
0,2
MATHEMATICA
a = {}; Do[k = 0; While[ Count[ IntegerDigits[6^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
With[{pwr6=Table[{n, DigitCount[6^n, 10, 0]}, {n, 1000}]}, Join[{0}, Transpose[ Table[ SelectFirst[pwr6, #[[2]]==i&], {i, 60}]][[1]]]] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(PARI) A063596(n)=for(k=0, oo, #select(d->!d, digits(6^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018
CROSSREFS
Cf. A031146 (analog for 2^k), A063555 (for 3^k), A063575 (for 4^k), A063585 (for 5^k), A063606 (for 7^k), A063616 (for 8^k), A063626 (for 9^k).
Sequence in context: A063661 A154533 A167608 * A360382 A284518 A369603
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
EXTENSIONS
a(0) changed to 0 (as in A031146, A063555, ...) and better title from M. F. Hasler, Jun 14 2018
STATUS
approved