login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Least k >= 0 such that 5^k has exactly n 0's in its decimal representation.
10

%I #14 Dec 20 2018 22:33:40

%S 0,8,13,34,40,48,52,45,64,99,143,132,100,122,117,151,205,207,201,242,

%T 230,244,231,221,295,264,266,333,248,344,346,274,391,345,356,393,433,

%U 365,472,499,488,455,516,485,511,458,520,487,459,456,457

%N Least k >= 0 such that 5^k has exactly n 0's in its decimal representation.

%H Robert Israel, <a href="/A063585/b063585.txt">Table of n, a(n) for n = 0..3373</a>

%H M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>. OEIS Wiki, March 2014

%p N:= 100: # to get a(0)..a(N)

%p A:= Array(0..N, -1):

%p p:= 1: A[0]:= 0:

%p count:= 1:

%p for k from 1 while count <= N do

%p p:= 5*p;

%p m:= numboccur(0, convert(p, base, 10));

%p if m <= N and A[m] < 0 then A[m]:= k; count:= count+1;

%p od:

%p convert(A,list); # _Robert Israel_, Dec 20 2018

%t a = {}; Do[k = 0; While[ Count[ IntegerDigits[5^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a

%o (PARI) A063585(n)=for(k=n,oo,#select(d->!d,digits(5^k))==n&&return(k)) \\ _M. F. Hasler_, Jun 14 2018

%Y Cf. A031146 (analog for 2^k), A063555 (analog for 3^k), A063575 (analog for 4^k), A063596 (analog for 6^k).

%K base,nonn

%O 0,2

%A _Robert G. Wilson v_, Aug 10 2001

%E a(0) changed to 0 (as in A031146, A063555, ...) and better title from _M. F. Hasler_, Jun 14 2018