login
A063553
Smallest k such that 2^k has exactly n 8's in its decimal representation.
8
1, 3, 19, 47, 23, 82, 91, 74, 165, 201, 147, 229, 213, 267, 281, 265, 342, 422, 416, 350, 322, 470, 454, 426, 537, 642, 631, 439, 593, 677, 625, 554, 723, 700, 745, 818, 896, 809, 995, 930, 957, 980, 1031, 1045, 1121, 1210, 891, 1191, 1154, 1369, 1230
OFFSET
0,2
MATHEMATICA
a = {}; Do[k = 1; While[ Count[ IntegerDigits[2^k], 8] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
PROG
(PARI) a(n)={my(k=1); while(n<>#select(d->d==8, digits(2^k)), k++); k} \\ Andrew Howroyd, Jun 26 2018
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
EXTENSIONS
Name corrected by Jon E. Schoenfield, Jun 25 2018
STATUS
approved