login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063549 Smallest number of crossing-free matchings on n points in the plane. 4
1, 1, 3, 2, 10, 5, 35, 14, 126, 42, 462, 132, 1716, 429, 6435, 1430, 24310, 4862, 92378, 16796, 352716, 58786, 1352078, 208012, 5200300, 742900, 20058300, 2674440, 77558760, 9694845, 300540195, 35357670, 1166803110, 129644790, 4537567650 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) = Catalan(n/2) if n is even else n*Catalan((n-1)/2) (see Garcia reference). The same as A057977. - Vladeta Jovovic, Mar 20 2010

LINKS

Table of n, a(n) for n=1..35.

O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.

A. Garcia, M. Noy, and J. Tejel, Lower bounds on the number of crossing-free subgraphs of K_N, Comput. Geom., 16 (2000), pp. 211-221.

FORMULA

(n+2)*a(n) -n*a(n-1) +4*(-2*n+1)*a(n-2) +4*(n-1)*a(n-3) +16*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 13 2013

MAPLE

# See A057977 for an implementation based on ballot numbers. Peter Luschny, Feb 23 2019

MATHEMATICA

a[n_?EvenQ] := CatalanNumber[n/2]; a[n_?OddQ] := n*CatalanNumber[(n-1)/2]; Table[a[n], {n, 3, 35}] (* Jean-François Alcover, Feb 03 2012, after Vladeta Jovovic *)

CROSSREFS

Cf. A057977, A063550.

Sequence in context: A277821 A318280 A057977 * A071653 A227631 A246830

Adjacent sequences:  A063546 A063547 A063548 * A063550 A063551 A063552

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, Aug 14 2001

EXTENSIONS

More terms from Jean-François Alcover, Feb 03 2012

a(1) = a(2) = 1 inserted and added Garcia reference from Nathaniel Johnston, Nov 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 00:47 EDT 2019. Contains 324223 sequences. (Running on oeis4.)