|
|
A063538
|
|
Numbers n that are not sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) >= sqrt(n).
|
|
27
|
|
|
2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence lists all numbers with a superior prime divisor, which is unique (A341676) when it exists. For example, 42 is in the sequence because it has a prime divisor 7 which is greater than the quotient 42/7 = 6. - Gus Wiseman, Feb 19 2021
|
|
REFERENCES
|
D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms; see pp. 95-98.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
Beeler, M., Gosper, R. W. and Schroeppel, R., HAKMEM, ITEM 29
|
|
FORMULA
|
Union of A001248 and A064052. - Gus Wiseman, Feb 24 2021
|
|
MAPLE
|
N:= 1000: # to get all terms <= N
Primes:= select(isprime, [2, seq(2*i+1, i=1..floor((N-1)/2))]):
S:= {seq(seq(m*p, m = 1 .. min(p, N/p)), p=Primes)}:
sort(convert(S, list)); # Robert Israel, Sep 01 2015
|
|
MATHEMATICA
|
Select[Range[2, 91], FactorInteger[#][[-1, 1]] >= Sqrt[#] &] (* Ivan Neretin, Aug 30 2015 *)
|
|
CROSSREFS
|
Cf. A006530, A063762.
Complement of A063539. Supersequence of A001358 (semiprimes).
The strictly superior version is A064052 (complement: A048098), with associated unique prime divisor A341643.
The case of odd instead of prime divisors is A116883 (complement: A116882).
Also nonzeros of A341591 (number of superior prime divisors).
The unique superior prime divisors of the terms are A341676.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts superior (also inferior) divisors.
A161908 lists superior divisors.
- Inferior: A033676, A063962, A066839, A161906, A217581, A333749, A333750.
- Superior: A051283, A059172, A070038, A072500, A341592, A341593, A341675.
- Strictly Inferior: A056924, A060775, A070039, A333805, A333806, A341596, A341674, A341677.
- Strictly Superior: A140271, A238535, A341594, A341595, A341642, A341644, A341645/A341646, A341673.
Cf. A000005, A001055, A001222, A001248, A020639, A056239, A112798.
Sequence in context: A340682 A166155 A325457 * A167207 A037143 A236105
Adjacent sequences: A063535 A063536 A063537 * A063539 A063540 A063541
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
N. J. A. Sloane, Aug 14 2001
|
|
STATUS
|
approved
|
|
|
|