OFFSET
0,1
COMMENTS
Conjecture: these are the primes such that prime(n+2) - 2*prime(n+1) + prime(n) > 0. If so, this sequence with A122535 and A147812 partition the primes. - Clark Kimberling, May 16 2015
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
EXAMPLE
a(2) = 5 because 7*7 < 5*11.
MAPLE
N:= 1000: # to get all entries where prime(n+2) <= N
Primes:= select(isprime, [2, seq(2*i+1, i=1..floor((N-1)/2))]):
J:= select(j -> Primes[j+1]^2<Primes[j]*Primes[j+2], [$1..nops(Primes)-2]):
Primes[J]; # Robert Israel, Jun 23 2015
PROG
(PARI) j=[]; for(n=1, 400, if(prime(n+1)^2<(prime(n)*prime(n+2)), j=concat(j, prime(n)))); j
(PARI) { n=-1; for (m=1, 10^9, if (prime(m + 1)^2 < prime(m)*prime(m + 2), write("b063535.txt", n++, " ", prime(m)); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel ten Voorde, Aug 02 2001
EXTENSIONS
More terms from Jason Earls, Aug 03 2001
STATUS
approved