login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063527 Numbers that are divisible by all of their 1 and 2 digit substrings. 4
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 1111, 1155, 1248, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 27216, 31248, 111111, 116688, 121212, 142128, 212184, 222222, 242424, 313131, 321216, 333333, 363636, 368424, 444444 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Subsequence of A034838. - Michel Marcus, Sep 19 2014

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10442

EXAMPLE

1155 is divisible by 1, 1, 5, 5, 11, 15 and 55.

MATHEMATICA

d12Q[n_]:=Module[{idn=IntegerDigits[n], idn2}, idn2=FromDigits/@Partition[ idn, 2, 1]; FreeQ[idn, 0]&&And@@Divisible[n, idn]&&And@@Divisible[n, idn2]]; Select[Range[400000], d12Q] (* Harvey P. Dale, Aug 11 2015 *)

PROG

(Python)

from itertools import product

A063527_list = []

for g in range(1, 7):

....for n in product('123456789', repeat=g):

........s = ''.join(n)

........m = int(s)

........if not any([m % int(d) for d in s]):

............for i in range(len(s)-1):

................if m % int(s[i:i+2]):

....................break

............else:

................A063527_list.append(m) # Chai Wah Wu, Sep 18 2014

(PARI) is(n) = {my(d = digits(n), t = 0); s = Set(d); if(s[1] == 0, return(0)); for(i = 1, 2, for(j = 1, #d - i + 1, t++; fr = fromdigits(vector(i, k, d[j+k-1])); if(n % fr != 0, return(0)); ) ); 1 } \\ David A. Corneth, Sep 17 2019

CROSSREFS

Cf. A034838 (integers divisible by all their digits).

Sequence in context: A034709 A178158 A034838 * A209933 A182183 A308472

Adjacent sequences:  A063524 A063525 A063526 * A063528 A063529 A063530

KEYWORD

base,easy,nonn

AUTHOR

Erich Friedman, Aug 01 2001

EXTENSIONS

More terms from David A. Corneth, Sep 17 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 03:54 EDT 2019. Contains 328211 sequences. (Running on oeis4.)